电脑桌面
添加51搜公文到电脑桌面
安装后可以在桌面快捷访问

扩散概率模型:理论与应用-英-43页.pdfVIP专享VIP免费优质

扩散概率模型:理论与应用-英-43页.pdf_第1页
1/43
扩散概率模型:理论与应用-英-43页.pdf_第2页
2/43
扩散概率模型:理论与应用-英-43页.pdf_第3页
3/43
Diffusion Probabilistic Models:Theory and ApplicationsFan BaoTsinghua University1By Fan Bao, Tsinghua UniversityDiffusion Probabilistic Models (DPMs)Ho et al. Denoising diffusion probabilistic models (DDPM), Neurips 2020.Song et al. Score-based generative modeling through stochastic differential equations, ICLR 2021.Bao et al. Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models, ICLR 2022.Bao et al. Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models, ICML 2022.2By Fan Bao, Tsinghua University𝑥0𝑥1𝑥𝑁…Transition of diffusion: 𝑞 𝑥𝑛 𝑥𝑛−1 = 𝑁( 𝛼𝑛𝑥𝑛−1, 𝛽𝑛𝐼)𝛼𝑛 = 1 − 𝛽𝑛≈ 𝑁(0, 𝐼)𝑥2Diffusion process: 𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0 𝑞 𝑥1 𝑥0 … 𝑞(𝑥𝑁|𝑥𝑁−1)• Diffusion process gradually injects noise to data• Described by a Markov chain: 𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0 𝑞 𝑥1 𝑥0 … 𝑞(𝑥𝑁|𝑥𝑁−1)Demo Images from Song et al. Score-based generative modeling through stochastic differential equations, ICLR 2021.3By Fan Bao, Tsinghua University𝑥0𝑥1𝑥𝑁…Transition of denoising: 𝑞 𝑥𝑛−1 𝑥𝑛 =?≈ 𝑁(0, 𝐼)𝑥2= 𝑞 𝑥0|𝑥1 … 𝑞 𝑥𝑁−1 𝑥𝑁 𝑞(𝑥𝑁)• Diffusion process in the reverse direction ⇔ denoising process• Reverse factorization: 𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0|𝑥1 … 𝑞 𝑥𝑁−1 𝑥𝑁 𝑞(𝑥𝑁)4By Fan Bao, Tsinghua UniversityDiffusion process: 𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0 𝑞 𝑥1 𝑥0 … 𝑞(𝑥𝑁|𝑥𝑁−1)𝑥0𝑥1𝑥𝑁…Transition of denoising: 𝑞 𝑥𝑛−1 𝑥𝑛 =?≈ 𝑁(0, 𝐼)𝑥2The model: 𝑝 𝑥0, … , 𝑥𝑁 = 𝑝 𝑥0|𝑥1 … 𝑝 𝑥𝑁−1 𝑥𝑁 𝑝(𝑥𝑁)Model transition: 𝑝 𝑥𝑛−1 𝑥𝑛 = 𝑁(𝜇𝑛 𝑥𝑛 , Σ𝑛(𝑥𝑛))approximate• Approximate diffusion process in the reverse direction5By Fan Bao, Tsinghua UniversityDiffusion process: 𝑞 𝑥0, … , 𝑥𝑁 = 𝑞 𝑥0 𝑞 𝑥1 𝑥0 … 𝑞(𝑥𝑁|𝑥𝑁−1)= 𝑞 𝑥0|𝑥1 … 𝑞 𝑥𝑁−1 𝑥𝑁 𝑞(𝑥𝑁)• We hope 𝑞 𝑥0, … , 𝑥𝑁 ≈ 𝑝 𝑥0, … , 𝑥𝑁𝑝 𝑥𝑛−1 𝑥𝑛 = 𝑁(𝜇𝑛 𝑥𝑛 , Σ𝑛(𝑥𝑛))• Achieved by minimizing their KL divergence (i.e., maximizing the ELBO)min𝜇𝑛,Σ𝑛 𝐾𝐿(𝑞(𝑥0:𝑁)||𝑝 𝑥0:𝑁 ) ⇔ max𝜇𝑛,Σ𝑛 E𝑞 log𝑝(𝑥0:𝑁)𝑞(𝑥1:𝑁|𝑥0)min KLmax ELBO6By Fan Bao, Tsinghua UniversityWhat is the optimal solution?7By Fan Bao, Tsinghua UniversityTheorem (The optimal solution under scalar variance, i.e., Σ𝑛 𝑥𝑛 = 𝜎𝑛2𝐼)The optimal solution to min𝜇𝑛 ⋅ ,𝜎𝑛2 𝐾𝐿(𝑞(𝑥0:𝑁)||𝑝 𝑥0:𝑁 ) is𝜇𝑛∗ 𝑥𝑛 =1𝛼𝑛 𝑥𝑛 + 𝛽𝑛∇ log 𝑞𝑛(𝑥𝑛) ,𝜎𝑛∗2 =𝛽𝑛𝛼𝑛 (1 − 𝛽𝑛E𝑞𝑛(𝑥𝑛)∇ log 𝑞𝑛 𝑥𝑛2𝑑).3 key steps in proof:➢ Moment matching➢ Law of total variance➢ Score representation of moments of 𝑞(𝑥0|𝑥𝑛)Bao et al. Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models, ICLR 2022.Noise prediction form:∇ log 𝑞𝑛(𝑥𝑛) = −1ഥ𝛽𝑛 E𝑞 𝑥0 𝑥𝑛 [𝜖𝑛]Estimated by predicting noiseParameterization of 𝝁𝒏 ⋅ : 𝜇𝑛 𝑥𝑛 =1𝛼𝑛 𝑥𝑛 − 𝛽𝑛1ഥ𝛽𝑛 Ƹ𝜖𝑛(𝑥𝑛)8By Fan Bao, Tsinghua UniversityTheorem (...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

扩散概率模型:理论与应用-英-43页.pdf

您可能关注的文档

无忧公文+ 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

确认删除?
QQ
  • QQ点击这里给我发消息
回到顶部